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OZET

Isaret dili, isitme veya konusma engelli bireyler igin temel bir iletisim aracidir; ancak otomatik
tanima teknolojileri hala sinirlidir. Bu ¢calisma, isaret hareketlerinden olusan ¢esitli 6rnekler sunan
Word-Level American Sign Language (WLASL) veri kiimesi iizerinde degerlendirilen isaret
tanima gergevesi sunmaktadir. Onerilen yaklasim, yalnizca standart kamera girigleri kullanarak
mekansal el konfigiirasyonlarin1 dogru bigimde modellemeye olanak taniyan ResNet50 tabanl
evrisimsel 6zellik ¢ikarimi ile MediaPipe ¢ergevesinden elde edilen el isaret noktasi temsillerini
birlestirmektedir. Model egitimi, WLASL veri kiimesindeki 15 yaygin isaret sinifi kullanilarak
Create ML ortaminda gergeklestirilmistir. Deneysel sonuglar, yaklasik %94 dogruluk orani
ile siniflandirma performansi elde edildigini ve yanit siirelerinin etkilesimli uygulamalar i¢in
uygun seviyede oldugunu gostermektedir. Karigiklik matrisi analizi, modelin farkli isaretleri
tanimadaki giliclii yonlerini ortaya koyarken, gorsel olarak benzer isaretler arasindaki zorluklar
da vurgulamaktadir. Teknik basariminin 6tesinde, hafif mimari enerji tiilketimini en aza indirir ve
6zel donanim gerektirmez; bu yoniiyle ¢evresel acidan siirdiiriilebilir yapay zeka uygulamalarini
destekler. Ayrica, isitme engelli bireylere yoOnelik iletisim araglarinin gelistirilmesini
destekleyerek, onerilen ¢ergeve sosyal kapsayicilik hedeflerine katkida bulunmakta ve egitim ile
saglik alanlarindaki daha genis siirdiiriilebilir kalkinma amaglariyla uyum gostermektedir.

Anahtar Kelimeler: Yapay Zeka, Isaret Dili, Derin Ogrenme, Iletisimde Siireklilik

ABSTRACT

Sign language is a critical medium of communication for individuals with hearing or speech
impairments, yet automated recognition technologies remain limited for many regional variants.
This study presents a sign recognition framework evaluated on the Word-Level American Sign
Language (WLASL) dataset, which provides diverse samples of isolated sign gestures. The
proposed approach combines ResNet50-based convolutional feature extraction with hand landmark
representations obtained through the MediaPipe framework, enabling accurate modeling of
spatial hand configurations using only conventional camera inputs. Model training was performed
via Create ML environment on 15 frequently used gesture classes from the WLASL dataset.
Experimental results demonstrate an overall classification accuracy of approximately 94%, with
response times suitable for interactive applications. Confusion matrix analysis highlights both
the strengths of the model in recognizing distinct gestures and the challenges posed by visually
similar signs. In addition to its technical performance, the lightweight design minimizes energy
consumption and does not require specialized hardware, supporting environmentally sustainable
Al practices. Furthermore, by supporting the development of communication tools for hearing-
impaired individuals, the framework contributes to social inclusion objectives and aligns with

broader sustainable development goals in education and healthcare.

Keywords: Artificial Intelligence, Sign Language, Deep Learning, Sustainability in

Communication.
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INTRODUCTION

It is generally accepted that inclusive communication is necessary to guarantee that people can
engage in social life, healthcare, and education on an equal basis. The primary means of expressing
thoughts, intentions, and even emotional states for those who are deaf or hard of hearing is sign
language. It conveys meaning through a combination of body posture, facial expressions, and
hand gestures. However, the general public hardly ever understands this mode of communication.
Consequently, obstacles to communication continue to exist. These obstacles are not insignificant;
they frequently interfere with day-to-day activities, restricting work opportunities, making it

challenging to obtain healthcare, and occasionally resulting in social isolation.

The need for more accessible communication tools has gained prominence in recent years.
Researchers are now focusing on automated sign language recognition (SLR) systems as a result
of the demand. With the growth of computer vision and deep learning, it is now possible to
translate visual sign inputs into spoken or written language. Studies conducted on widely known
sign languages—such as American Sign Language (ASL), British Sign Language (BSL), and
South African Sign Language—show that these systems can reach high accuracy levels and be
used in practical settings (Takyi et al., 2025). Neural network models, especially Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), play an important role here

because they are capable of learning both spatial and temporal aspects of gestures.

Even with these advances, some challenges remain unsolved. Variations in signer appearance,
overlapping gestures, and problems caused by lighting or camera movement still reduce system
reliability. Another point is that most studies work with widely standardized sign languages. Local
or regional sign variants, which are common in real communities, are often ignored. In addition
to accuracy of recognition, there are additional practical concerns to account for. Most systems
demand expensive hardware or cloud computer infrastructure, which makes them impractical
to implement within schools, public offices, or rural health clinics. Additionally, power usage
by high-powered Al models has sparked concern over such systems’ feasibility. To counteract
such issues, this paper advocates for a lightweight system that has been deployed with the Word-
Level American Sign Language (WLASL) dataset. Efficiency and reduced reliance on hardware
are made central, in line with sustainable design practices. The approach hopes to provide an
example of how inclusive sign languages technology can be efficient as well as environmentally

sustainable.

1. LITERATURE REVIEW

Sign language recognition (SLR) research has made great progress in the past decade. Such
advances are due to advances in machine learning algorithms, growth in annotated datasets, and
an increasing societal concern with inclusive communication tools. In this domain, three main
lines of methodology have appeared: systems that are grounded on physical sensors, ones that
are based exclusively on vision, and hybrid ones that exploit a variety of data modalities to boost
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robustness and accuracy.

Sensor-based methods form the earliest generation of SLR technologies. These systems
usually use data gloves, accelerometers, or inertial measurement units (IMUs) to get very detailed
information about how hands and fingers move (Hasan & Mishra, 2012). Even though these kinds
of setups can give very accurate motion data, they need special hardware, which makes them less
scalable and less useful in everyday situations. Foundational surveys, such as the review by Walde
et al. (2017), delineated initial taxonomies of gesture modeling techniques and classification
strategies (Walde et al., 2017). These early studies had an impact on later research paths and

helped set the standard for comparing newer methods.

With the rapid growth of computer vision, focus in the field gradually shifted toward camera-
based recognition. Such approaches circumvent spatial sensor requirements and process video
or image inputs fed from conventional cameras rather. Veale et al. (1998) multilingual “Zardoz”
system was one of the earliest significant systems to fall into this category, combining facial
expressions with linguistic processing to serve sign translation ends (Veale et a., 1998). Following
experiments employed convolutional neural networks (CNNs) to procure mobile and real-time
deployments; Sutjiadi (2020), for example, instantiated an Android OS-based ASL finger-spelling
recognizer that had been trained using general image dataset (Sutjiadi, 2020). Most recently,
spatial and temporal dynamics of sign gestures have been addressed by three-dimensional CNNs
at once to significantly boost interpretation of complex motion (Renjith et al., 2024). The hybrid
methods that combine skeletal landmark data with raw video attributes have themselves grown
popular as one way to minimize environmental variability. The recent paper by El-Alfy et al.
(2022) presented an excellent review of this type, underlining the broader trend to migrate from
sensor-based to visionbased approaches and noting an emerging emphasis upon multimodal
fusion (El-Alfy et al., 2022).

Even with these advancements, there remains a significant lack of research on Turkish Sign
Language (TSL) when compared to the extensive studies conducted on other internationally
recognised sign languages that are commonly utilised. Notable attempts include the detection of
TSL signs by Aksoy et al. (2021), who combined deep learning and image processing methods
and reported excellent results on a controlled dataset (Aksoy et al., 2021). To demonstrate that
vision-based methods can be effectively modified for regional languages, Giiney and Erkus
(2022) created a CNN-based real-time recognition system specifically designed for TSL (Gliney
et al., 2022). The YOLOVS architecture was used in a more recent object detection framework
by Karakan and Oguz (2025) for TSL letter and number recognition in live video streams.
The framework achieved competitive results, including 90.7% stability, 85.8% mean average
precision, and 81.4% recall (Karakan et al., 2025).
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A recurring issue in the literature is striking a balance between practical usability and high
recognition accuracy. It is challenging to implement many high-performing models in public ins-
titutions, educational institutions, or rural healthcare settings because they require resource-inten-
sive GPUs or specialized sensors. Furthermore, the majority of studies focus more on recognition
accuracy than on latency, energy efficiency, and environmental sustainability—factors that are
becoming more and more important for real-world deployment. By presenting a sign recognition
framework, the current study allays these worries. This strategy seeks to close the gap between
scalable and ecologically friendly assistive solutions and experimental prototypes.

3. METHODOLOGY
3.1 Theoretical Background

To autonomously identify sign language, it is necessary to acquire knowledge of the spatial
and temporal dynamics of human gestures. Deeper neural network architectures are suitable for
this job. Russell and Norvig (2020) gave a full explanation of the theoretical bases for this. They
also laid the groundwork for most of today’s computer vision systems (Russell et al., 2020).
Convolutional Neural Networks (CNNs) have been especially useful for problems involving vi-
sual recognition in this context. They can learn small differences in visual data because they can
process with local receptive fields, share weights between layers, and build a hierarchy of feature
maps. This skill is very important for understanding sign language because the ability to distin-
guish small changes in hand, finger, and relative positions is essential for accurate grouping of

similar gestures.

The Residual Network (ResNet) setup is an improvement on the basic CNN structure. It fixes
the common problem of vanishing gradients, which happens in very deep networks, by using
shortcuts or residual connections. These links make identity mappings, which help the model
learn by making the gradients move smoothly. This enables the construction of deeper models
without compromising efficiency. The ResNet50 variant is based on a convolutional architecture
and has fifty layers. Many people know that this kind of design can store a lot of data and pro-
cess it quickly. Das et al. (2024) say that ResNet50 is a great choice for apps that need to track
movements in real time because all of its parts work together.

Some features of this CNN backbone can be utilized. Using landmark-based extraction metho-
ds like those from MediaPipe is another way to learn more about how the hands move.  In two
or three dimensions, MediaPipe can find 21 important places on each hand. These points show
where the tips and joints of the fingers are. The skeletal form can handle changes in lighting or be-
ing partially blocked and still keep the fingers’ positions in space. Combining pixel features from
CNN with these famous places supports a hybrid approach that uses both low-level visual clues
and higher-level structural descriptors. The method makes classification more accurate without
adding much latency, which is useful for applications that need to read signs.

Sign Language Recognition Modeling With Deep Learning Method
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3.2. Deep Learning

Deep learning has become a key method in Al because it can find important features in raw
data without needing to be manually engineered (Alhijaj et al., 2023). Using multilayered neural
network structures, these models can slowly learn hierarchical representations. This skill makes
it much easier to deal with difficult things like processing text, audio, and images. This skill is
very important for understanding sign language because even small changes in how the hands are

positioned, how they move, or how the fingers are positioned can change how a sign is understood.

In the context established by this study, deep learning functions as the principal analytical
component. The system does not just look at frames one at a time; it looks at whole video
sequences to find the spatiotemporal dependencies between movements that happen one after the
other. This time dimension is very important in sign languages because the meaning comes from

how the gestures move, not from still images.

Another good thing about the proposed method is that it uses three-dimensional coordinates (X,
y, z) that match up with anatomical landmarks like the wrists, elbows, shoulders, and fingertips.
The model’s job is easier when it uses these coordinates instead of raw pixel data. This helps it
focus on the geometric relationships that are most important for classification. Data changes into
more and more abstract forms as it moves through different layers of the network. This process
keeps the model strong even when the lighting, background, or the way the signer signs changes.
Training in steps also helps reduce errors in classification.

3.3. ResNet50 Architecture

ResNet50 is a well-known standard architecture in computer vision because it balances
network depth and speed well. It learns residual functions by using identity shortcut connections
instead of direct mappings. It has 50 layers that are grouped into residual blocks (Das et al., 2024).
This residual design helps with the problem of the gradient disappearing, which is common in
deep networks. This makes training more stable and allows the use of much deeper architectures

in a meaningful way.

ResNet50 has an initial convolutional layer, a max pooling stage, and four more residual
stages. The number of feature dimensions gradually increases from 64 to 128, 256, and finally
512 channels during these phases. In the bottleneck configuration of each residual block, a 1x1
convolution lowers the number of dimensions, a 3x3 convolution pulls out spatial features, and a
final 1x1 convolution raises the number of dimensions again. This design is great for tasks that
need accurate but scalable feature extraction because it strikes a good balance between how well
it works and how well it represents things.

This hierarchical structure makes it much easier to understand sign language. ResNet50’s
multiscale features can accurately capture both small finger movements and bigger arm
movements. This is because gestures often combine the two. The network was started with

pretrained weights from big datasets like ImageNet. These datasets provide basic visual elements
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like edges, contours, and textures that go well with sign language data. Fine-tuning the top layers
on the WLASL dataset helps cut down on training time, overfitting, and makes the model more

accurate in different recording situations. It also helps the network adjust to how the task changes.

3.4. Rationale for Model Selection

ResNet50 was chosen as the framework for this study because it performs well with both
empirical data and real-world application requirements. ResNet50 is one of the deep convolutional
architectures that produces successful results. Furthermore, it utilizes residual connections to
solve the vanishing gradient problem, a common problem in deep learning. This feature makes
it particularly suitable for situations where datasets are relatively small, such as those in sign
languages that are not sufficiently represented by examples.

Its compatibility with transfer learning is equally important. The network inherits low-level
visual features and requires less training data to achieve competitive performance by initializing
with pretrained weights from large datasets like ImageNet. Given the scarcity of annotated sign
language corpora, this method reduces the chance of overfitting while speeding up development
cycles.

The system incorporates landmark-based hand representations that are extracted using
the MediaPipe framework to supplement this backbone. MediaPipe maintains the geometric
relationships between joints and fingertips while identifying 21 important landmarks per hand.
By using these structured coordinates instead of pixel-level images, computational overhead
is greatly decreased while the essential spatial information required for precise recognition is
preserved. For deployment on consumer-grade devices with constrained processing power and
energy resources, this efficiency is especially beneficial.

The Create ML environment was used to implement the entire processing pipeline, from
preprocessing to training, validation, and deployment (Apple Inc., 2024). The ResNet50 backbone
receives landmark coordinates from WLASL video sequences and uses them to build hierarchical
feature representations through bottleneck and residual layers. Classification is then achieved
through fully connected layers with softmax activation. As a result, Figure 1 shows a model that

is optimized for performance on the macOS and iOS platforms.

Sign Language Recognition Modeling With Deep Learning Method 35



INTERNATIONAL JOURNAL OF SUSTAINABILITY INTJOS 2025; 3(1):29-44

ResNet50 \&l

Input Image MediaPipe

Create ML

!

Prediction

Figure 1. The Proposed System Architecture Workflow

A final consideration guiding the architectural choice was sustainability. The suggested
framework’s low hardware requirements and energy-conscious design complement more general
guidelines for developing Al in an environmentally responsible manner. The method provides a
scalable route for inclusive communication technologies by preserving predictive accuracy while
consuming the fewest resources possible. It is especially appropriate for educational and public

service settings where computational and energy resources are frequently limited.

The following is a summary of this methodology’s contributions:

» A fusion of residual network hierarchies with skeletal landmarks, striking a balance betwe-
en recognition accuracy and computational demands.

* An effective transfer learning adaptation, fine-tuning pretrained weights to address the

scarcity of annotated data in regional sign language.

* A deployment-oriented design optimized for execution on standard hardware, promoting

accessibility in diverse environments.

» Integration of sustainability principles by reducing energy consumption and hardware
requirements, thus enabling environmentally responsible Al solutions.

In this study, deep learning techniques are combined with compact skeletal representations
to address persistent challenges commonly observed in sign language recognition research.
The primary obstacles include the restricted accessibility of annotated training data and the
computational limitations imposed by hardware with limited resources. In addition to addressing
these technical issues, the suggested method supports a more general goal: creating recognition
frameworks that support social inclusion while preserving energy efficiency and reducing

environmental impact.
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4. EXPERIMENTAL STUDIES

The empirical studies carried out to evaluate the effectiveness and viability of the suggested
sign language recognition framework are presented in this section. The evaluation covers a num-
ber of important topics, including network architecture, feature extraction techniques, preproces-
sing strategies, dataset characteristics, and training protocols. Apart from standard metrics for
recognition accuracy, the experiments were designed to assess computational efficiency and the
system’s suitability for deployment, which are crucial considerations when transferring assistive
technologies from research prototypes to everyday use.

4.1. Dataset and Preprocessing Process

A dataset that was first made public during the Kaggle Sign Language Recognition competition
was used in the experimental phase (Kaggle, 2025). This resource comes from the Word-Level
American Sign Language (WLASL) corpus, which has more than 40,000 annotated examples of
30 common manual gestures. Instead of storing whole pixel-level video frames like most datasets
do, this corpus encodes each gesture using landmark coordinates that cover the hands, face, and
upper body. This kind of representation is small in terms of computation and keeps semantically
important structural information, which makes it easier to model gesture dynamics well and uses

less memory.

For this study, we chose 15 gesture classes that are often used in everyday communication
to replicate interactions. Both static signs (like numbers or commonly used words) and dynamic
movements (like greetings or affirmative responses) were included in the chosen gestures. Instead
of being randomly selected, these classes were specifically chosen to represent gestures that are
frequently used in daily interactions, distinct interclass differences, and a range of temporal
characteristics that are appropriate for assessing both isolated and transitional sign recognition.

The dataset was divided in order to guarantee a thorough assessment. In order to closely
resemble real-world deployment conditions where the system must generalize to previously
unseen signers, individuals who were part of the training subset were excluded from the testing
subset. Stratified sampling was used to ensure balanced class distributions across all subsets, and
the data were split 80-10-10 for training, validation, and testing.

To improve robustness, several preprocessing steps were used before model training. To adjust
for variations in camera distance and scale, landmark coordinates were normalized in relation
to frame dimensions. Then, to reduce slight jitter in keypoint detection—a modification that
is especially helpful for dynamic gestures—temporal smoothing was used. Additionally, data
augmentation techniques, such as random horizontal flipping and mild temporal scaling, were
used to boost intra-class variability and strengthen the system’s resistance to changes in the
environment. All of these preprocessing steps combined produced a dataset that was ideal for
precise and effective recognition in the suggested framework.
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4.2. Preprocessing and Feature Engineering

The goal of designing the preprocessing and feature engineering pipeline was to guarantee
consistent performance across various signers and under various recording conditions. Data in
sign language are naturally diverse; significant variability is introduced by elements like camera
quality, variations in framing, and hand placement. Raw landmark coordinates were obtained
using MediaPipe and subsequently passed through a series of normalization steps to make these
differences smaller. Each set of coordinates was rescaled based on the frame size to make up
for differences caused by the distance or angle of the camera. After normalization, temporal
smoothing was used to get rid of the high-frequency jitter that is often seen in landmark detection
outputs. This kept the natural flow of gestures without changing the motion patterns that underlie
them.

Another problem that was fixed during preprocessing was the relatively small amount of
annotated training data. To help generalize to new signers and environments, a number of data
augmentation methods were shown. These included small changes in rotation to mimic natural
changes in hand orientation, small changes in scaling to account for differences in hand size or
camera angle, and horizontal mirroring to account for differences between left- and right-handed
people. By adding these controlled perturbations during training, the network learns to prioritize
invariant features. This makes it more robust in real-world situations where recording conditions

are rarely the same.

After normalization and augmentation were done, each gesture sequence was turned into a
set of 21 hand landmarks for each frame. This representation keeps the geometric relationships
needed for accurate recognition while greatly reducing the number of dimensions compared to
raw pixel data. It captures both fine-grained finger movements and more general hand positions.
The compact feature format, which helps with computational efficiency, is directly in line with
the system’s sustainability goals. Classification accuracy is very important for public services
and assistive technologies. Reduced memory use and lower inference latency make it possible for

these technologies to work well on standard consumer hardware.

4.3 Model Configuration and Training Strategy

The sign recognition model in this study was developed using the Create ML framework
and is predicated on ResNet50. A transfer learning approach was employed in conjunction with
pretrained weights from the ImageNet dataset, which capture fundamental visual features such as
edges and textures. This initialization set up a strong base that let the fully connected classification
layer adapt to the unique spatial and temporal patterns of the chosen Word-Level American Sign
Language (WLASL) gestures and fine-tune deeper residual blocks.

Iterative hyperparameter tuning was used to find the best possible balance between training
stability and accuracy. A batch size of 32 produced effective gradient updates without consuming

too much memory, according to empirical testing. The Adam optimizer, a popular algorithm for
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transfer learning tasks because of its adaptive step-size adjustments, was used to optimize the
learning rate, which was set at 0.001. To avoid overfitting, training was carried out for a maximum
of 50 epochs, with early stopping initiated when validation loss plateaued. For this type of multi-
class classification problem, categorical cross-entropy was chosen as the loss function.

Every experiment was carried out on a typical workstation without GPU acceleration that had
an Intel Core i7 processor (3.2 GHz) and 16 GB of RAM. This hardware selection was intentional
because one of the study’s objectives was to show that competitive recognition performance
could be attained using widely available, low-end computer resources. Reaching this benchmark
demonstrates how useful the framework is for implementation in real-world settings, especially in

public service and educational settings where expensive hardware might not be accessible.

4.4 Evaluation Metrics

Four metrics commonly applied in multi-class classification tasks—recall, precision, accuracy,
and F1 score—were employed to evaluate the effectiveness of the proposed framework. Accuracy
indicated the proportion of samples assigned to the correct category, thereby reflecting the overall
correctness of classification. Precision was calculated to determine the proportion of true positive
predictions, thereby assessing potential bias toward false positives. Recall was measured to
evaluate the system’s ability to identify true positives and minimize false negatives. Lastly, the F1
score, which is the harmonic mean of precision and recall, showed how well the model worked
in every way. This was especially helpful when the class distributions were split up but still had
small differences.

In addition to these overall measures, a confusion matrix analysis was conducted to assess the
performance of each class. This analysis was helpful because some signs, like “hello” and “good
morning,” have hand positions and paths that cross each other, which can be hard for people to
see. The matrix put some gestures that were very similar to each other in the wrong group. This
means that some things could be improved. The addition of facial expression cues or temporal
attention mechanisms could facilitate the distinction between closely related signs.

The independent test set showed that the system was correct 94.0% of the time. The results
showed that all gesture classes were recognized well and fairly, with precision, recall, and F1
scores of 92.0%, 94.5%, and 93.0%, respectively. For ten trials on the specified hardware setup,
it took about 0.7 seconds per gesture to make an inference. Because the apps are responsive
enough, schools and hospitals can use them. The system works even better in real life because it
can always figure out what different types of signs and signer profiles mean.

Table 1 displays a summary of performance metrics from prior studies for comparative analysis
with the current study. Although Aksoy et al. (2021) and Karakan et al. (2025) obtained marginally
better accuracy on datasets that focused on alphabet gestures or used specialized hardware, these
systems were either resource-intensive or lacked real-time capabilities. The framework presented

in this study, on the other hand, is very suitable for deployment on consumer-grade devices in
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assistive and public service applications because it provides competitive accuracy while still
being lightweight and energy-efficient.

Table 1. Comparative Evaluation of Sign Language Recognition Systems

Study Dataset Architecture I(AO/Cg uracy Application Capability
0

Aksoy et al. Custom 0 .

(2021) dataset CapsNet 99.7% Limited

Oktekin et al. Custom o .

(2019) dataset HMM 82% Limited
ResNet50 + Limited — But

This Study Kaggle SL Landmark- 94.0% Integrable into Real-
Based Time Systems

Karakan et al. Custom .

(2025) dataset YoloV8 90.7 Fully Real-Time

Additional information about the system’s functionality can be obtained by closely examining
the confusion matrix shown in Figure 2. Generally speaking, most gesture categories were
reliably identified; however, the misclassifications that did occur were not random but rather
followed a clear pattern. In particular, mistakes tended to group together among gestures with
similar motion paths or spatial arrangements. This observation suggests that these difficult cases
may be the focus of future improvements. Integrating transformer-based temporal architectures
or multimodal fusion techniques, which can model sentence-level dependencies and potentially

lessen confusion between visually similar signs, could be one promising approach.

It also examined how data augmentation methods affected the overall performance of the
system. Adding augmented samples made the model much better at adapting to changes in the
position of the signer and the camera. This enhancement was less perceptible for gestures that are
inherently ambiguous, as even augmented data could not fully resolve classification challenges.
These results suggest a clear direction for future development: augmenting the dataset with more
contextually rich samples and a broader array of sequential patterns could enhance the model’s
capacity to manage subtle variations in sign articulation.

In conclusion, the proposed framework successfully achieves a balance between computational
efficiency and recognition accuracy. This balance fits with the main goals of the study, which are
to make communication technologies that are scalable and open to everyone, as well as to use
eco-friendly computing methods.

The Effects of Negative Interest Rate Policies on Productivity, Efficiency and Innovation
as a Conceptual Approach
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Figure 2. Applied Models’ Confusion Matrix

5. DISCUSSION

The experimental results of the study demonstrate that even hardware with constrained
processing capabilities can effectively recognise sign language. Older systems often needed strict
lab conditions or special equipment to get an accuracy rate of about 94% without using special
sensors. This is a big step forward. How quickly the model can make inferences is also very
important. It takes an average of 0.7 seconds per gesture, which makes it easy for people to talk
to each other in real life, like in classrooms and during clinical consultations, where delays can

really slow down communication.

These results are good, but you should remember that there are some limits. The current system
can only see one gesture at a time. It does not yet take into account that sign languages are always
changing and have grammar that is hard to understand. It is important to use non-manual features
like gaze direction, head tilts, and facial expressions to convey semantic meaning, but they are not
modelled. This is what the confusion matrix shows. Saying “hello” or “good morning” is a way
to move through space, and people often get it wrong.

The technology in the development environment made this work go both faster and slower at
the same time. Because Create ML was closed source, it was hard to try out new hyperparameters
or change architectures. However, it made it easy to quickly prototype and deploy within the
Apple ecosystem. Moving to open-source frameworks like PyTorch or TensorFlow would help

the community make progress by making it easier to scale across platforms and allowing for more
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experimentation.

Another good thing about this framework is that it works well with sustainability goals. It is
especially useful in places where resources are limited, like community health centers and rural
schools, because it doesn’t use much energy and works with consumer-grade devices, which saves
money and protects the environment. This design philosophy is in line with the UN Sustainable
Development Goals, especially those that focus on making technology and education available
to everyone. It also fits in with current talks about Al that is good for the environment (Wright et
al., 2023; Wu et al., 2021).

There are a number of obvious avenues for progress in the future. By incorporating sequence-
aware models, like transformer-based attention mechanisms, the system may be able to process
continuous signing and better capture linguistic context. To further enhance generalization
to real-world situations, the dataset should be expanded to include a larger vocabulary, more
diverse signers, and context-rich recording scenarios. Furthermore, adding multimodal cues, like
upper-body posture and facial landmarks, would improve semantic representation and lessen
misunderstandings between visually similar gestures.

Overall, this framework shows that without specialized hardware, accurate and energy-
efficient sign language recognition is possible. With further improvements in sequential modeling,
multimodal integration, and dataset expansion, this prototype could become a full-featured
translation tool, greatly increasing accessibility for the deaf and hard-of-hearing community.

6. CONCLUSION

The point of this study was to see if regular video input and consumer-grade hardware could
figure out sign language on their own. Using skeletal landmarks and a residual deep learning
model, the framework could process each gesture in less than a second and get about 94% accuracy
on the WLASL dataset. These numbers may not be the best in the field, but they are interesting
because they came from real life, not a controlled lab.

The main focus of this work is on sustainability and inclusivity, which are very important. The
system is flexible because it can work with a lot of different devices and does not need any special
sensors or powerful GPUs. This framework is great for communities with few resources because
it saves money and energy. The design choices made here are in line with global goals like the
United Nations’ Sustainable Development Goals, which stress how important it is for everyone to

have equal access to technology and education.

There are still some big problems that need to be fixed. The current model can only understand
separate gestures, not the continuous signing and grammar that real sign languages use. It is
important to use facial expressions and head movements that do not involve hands to show
meaning, but they should not be mixed together. To get around these limits, we need to use
transformer-based models and multimodal data sources that are aware of sequences to improve

semantic representation.
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It is also getting harder to make datasets. If you add more signers, make the vocabulary bigger,
and add scenarios that are full of context, the system will be more general and strong. If you
switch from Create ML to open-source frameworks like PyTorch or TensorFlow, it will be easier

to change the architecture, make the platform more scalable, and get the same results again.

In short, the study demonstrates that core hardware can support sign language recognition in
a manner that is accurate, practical, and suitable for public use. The framework could turn into a
full translation system that helps people who are deaf or hard of hearing talk to each other and get
along better.  This will depend on how well sequential modelling, multimodal integration, and
expanding datasets get better in the future.
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